|
1 |
Uncovering Cultural Influences on Perceptual Image and Video Quality Assessment through Adaptive Quantized Metric Models Saupe, Dietmar. - Konstanz : KOPS Universität Konstanz, 2025
|
|
|
2 |
CUDAS : Distortion-Aware Saliency Benchmark Zhao, Xin. - Konstanz : KOPS Universität Konstanz, 2023
|
|
|
3 |
JPEG AIC-3 Dataset : Towards Defining the High Quality to Nearly Visually Lossless Quality Range Testolina, Michela. - Konstanz : KOPS Universität Konstanz, 2023
|
|
|
4 |
Konx : cross-resolution image quality assessment Wiedemann, Oliver. - Konstanz : KOPS Universität Konstanz, 2023
|
|
|
5 |
Critical analysis on the reproducibility of visual quality assessment using deep features Götz-Hahn, Franz. - Konstanz : KOPS Universität Konstanz, 2022
|
|
|
6 |
Crowdsourced Quality Assessment of Enhanced Underwater Images : a Pilot Study Lin, Hanhe. - Konstanz : KOPS Universität Konstanz, 2022
|
|
|
7 |
Large-scale crowdsourced subjective assessment of picturewise just noticeable difference Lin, Hanhe. - Konstanz : KOPS Universität Konstanz, 2022
|
|
|
8 |
TranSalNet : Towards perceptually relevant visual saliency prediction Lou, Jianxun. - Konstanz : KOPS Universität Konstanz, 2022
|
|
|
9 |
KonVid-150k : A Dataset for No-Reference Video Quality Assessment of Videos in-the-Wild Götz-Hahn, Franz. - Konstanz : KOPS Universität Konstanz, 2021
|
|
|
10 |
Subjective Image Quality Assessment With Boosted Triplet Comparisons Men, Hui. - Konstanz : KOPS Universität Konstanz, 2021
|
|