|
1 |
Machine learning techniques for time series forecasting in power systems operation Gürses-Tran, Gonca. - Aachen : E.ON Energy Research Center, RWTH Aachen University, 2024, 1. Auflage
|
|
|
2 |
Route and operating optimization of maritime vessels using machine learning techniques Moradi, Mohammad Hossein. - Berlin : Logos Verlag, [2024]
|
|
|
3 |
Search for Higgs boson production in association with b-Quarks in final states with leptons with machine learning techniques at CMS Bayat Makou, Maryam. - Hamburg : Verlag Deutsches Elektronen-Synchrotron DESY, May 2024
|
|
|
4 |
Machine learning techniques for time series classification Botsch, Michael. - Göttingen : Cuvillier Verlag, 2023, 2. Auflage
|
|
|
5 |
Measurement of the tt̄H(bb̄) process in the dilepton final state with machine learning techniques at the CMS Experiment Giraldi, Angela. - Hamburg, Germany : Verlag Deutsches Elektronen-Synchrotron DESY, April 2023
|
|
|
6 |
Essays on the application of machine learning techniques in the empirical asset pricing research Otto, Tizian. - Hamburg, October 31, 2022
|
|
|
7 |
Tau reconstruction in CMS exploiting machine learning techniques Chen, Ze. - Hamburg : Deutsches Elektronen-Synchrotron DESY, October 2022
|
|
|
8 |
Novel applications of machine learning techniques in epidemiology of age-related diseases: from multidimensional data modelling to risk prediction Reichmann, Robin. - Potsdam, 26.03.2021
|
|
|
9 |
Optimizing the machine learning techniques in the H → π analysis with CMS data Bayat Makou, Maryam. - Hamburg : Deutsches Elektronen-Synchrotron, February 2021
|
|
|
10 |
Prediction of business processes Brunk, Jens Marten Lorenz. - Münster, 2021
|
|