|
1 |
Extending Joint Models and Quantile Regression - New Bayesian Approaches to Estimation and Effect Selection Rappl, Anja. - Erlangen : Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 2025
|
|
|
2 |
A D-Vine Copula-Based Quantile Regression Approach for the Prediction of Heating Energy Consumption. Using Historical Data for German Households Niemierko, Rochus. - München : GRIN Verlag, 2019, 1. Auflage, digitale Originalausgabe
|
|
|
3 |
A D-Vine Copula-Based Quantile Regression Approach for the Prediction of Heating Energy Consumption. Using Historical Data for German Households Niemierko, Rochus. - München : GRIN Verlag, 2019, 1. Auflage
|
|
|
4 |
The Consistency of Quantile Regression in Linear Mixed Models Weidenhammer, Beate. - Berlin : Freie Universität Berlin, 2019
|
|
|
5 |
Modelling Systemic Risk using Neural Network Quantile Regression Keilbar, Georg. - Berlin : Humboldt-Universität zu Berlin, 2018
|
|
|
6 |
D-vine copula based quantile regression and the simplifying assumption for vine copulas Kraus, Daniel. - München : Universitätsbibliothek der TU München, 2017
|
|
|
7 |
Econometric analysis of quantile regression models and networks : With empirical applications Marchenko, Maria. - Mannheim : Universitätsbibliothek Mannheim, 2016
|
|
|
8 |
The theory of quantile regression and ist application in finance and macroeconomics Weber, Sebastian. - Trier, 2016
|
|
|
9 |
Quantile regression in risk calibration Chao, Shih-Kang. - Berlin : Humboldt Universität zu Berlin, Wirtschaftswissenschaftliche Fakultät, 2015
|
|
|
10 |
Monitoring Industrial Machine Power Consumption Using Non- and Semiparametric Quantile Regression Ballentin, Sven. - Berlin : Humboldt-Universität zu Berlin, 2014
|
|