|
1 |
Viscoelastic Phase-Field Models for Tumour Growth: Modelling, Analysis and Numerics Trautwein, Dennis. - Regensburg : Universitätsbibliothek Regensburg, 2024
|
|
|
2 |
Corrigendum to: Numerical analysis for a Cahn–Hilliard system modelling tumour growth with chemotaxis and active transport Enthalten in Journal of numerical mathematics Bd. 32, 2024, Nr. 2: 213-214. 2 S.
|
|
|
3 |
Optimization and uncertainty quantification for geometric structures Wolff-Vorbeck, Steve. - Freiburg : Universität, 2023
|
|
|
4 |
Phase-Field Methods for Spectral Shape and Topology Optimization Hüttl, Paul. - Regensburg : Universitätsbibliothek Regensburg, 2023
|
|
|
5 |
Sharp interface analysis of a diffuse interface model for cell blebbing with linker dynamics Enthalten in ZAMM 12.09.2023. 39 S.
|
|
|
6 |
Global regularity and asymptotic stabilization for the incompressible Navier–Stokes-Cahn–Hilliard model with unmatched densities Enthalten in Mathematische Annalen 19.7.2023: 1-55
|
|
|
7 |
Numerical analysis for a Cahn–Hilliard system modelling tumour growth with chemotaxis and active transport Enthalten in Journal of numerical mathematics Bd. 30, 2022, Nr. 4: 295-324. 30 S.
|
|
|
8 |
Stability analysis for stationary solutions of the Mullins–Sekerka flow with boundary contact Enthalten in Mathematische Nachrichten 11.03.2022. 23 S.
|
|
|
9 |
Analysis and Numerics of Two-Phase Flows of Active Liquid Crystals with Willmore-type Interfacial Energy: A Micro-Macro Approach Sieber, Oliver. - Erlangen : Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 2021
|
|
|
10 |
Boundary Value Problems for Evolutions of Willmore Type Menzel, Julia. - Regensburg : Universitätsbibliothek Regensburg, 2021
|
|