| 
			1 | 
		
			
									
						Viscoelastic Phase-Field Models for Tumour Growth: Modelling, Analysis and Numerics Trautwein, Dennis. - Regensburg : Universitätsbibliothek Regensburg, 2024
					
							 | 
									
			
								
									  
								
			 | 
		
		
			
			 
			
					    					 
							
			 | 
			2 | 
		
			
									
						Corrigendum to: Numerical analysis for a Cahn–Hilliard system modelling tumour growth with chemotaxis and active transport Enthalten in Journal of numerical mathematics Bd. 32, 2024, Nr. 2: 213-214. 2 S.
					
							 | 
									
			
								
									  
								
			 | 
		
		
			
			 
			
					    					 
							
			 | 
			3 | 
		
			
									
						Optimization and uncertainty quantification for geometric structures Wolff-Vorbeck, Steve. - Freiburg : Universität, 2023
					
							 | 
									
			
								
									  
								
			 | 
		
		
			
			 
			
					    					 
							
			 | 
			4 | 
		
			
									
						Phase-Field Methods for Spectral Shape and Topology Optimization Hüttl, Paul. - Regensburg : Universitätsbibliothek Regensburg, 2023
					
							 | 
									
			
								
									  
								
			 | 
		
		
			
			 
			
					    					 
							
			 | 
			5 | 
		
			
									
						Sharp interface analysis of a diffuse interface model for cell blebbing with linker dynamics Enthalten in ZAMM 12.09.2023. 39 S.
					
							 | 
									
			
								
									  
								
			 | 
		
		
			
			 
			
					    					 
							
			 | 
			6 | 
		
			
									
						Global regularity and asymptotic stabilization for the incompressible Navier–Stokes-Cahn–Hilliard model with unmatched densities Enthalten in Mathematische Annalen 19.7.2023: 1-55
					
							 | 
									
			
								
									  
								
			 | 
		
		
			
			 
			
					    					 
							
			 | 
			7 | 
		
			
									
						Numerical analysis for a Cahn–Hilliard system modelling tumour growth with chemotaxis and active transport Enthalten in Journal of numerical mathematics Bd. 30, 2022, Nr. 4: 295-324. 30 S.
					
							 | 
									
			
								
									  
								
			 | 
		
		
			
			 
			
					    					 
							
			 | 
			8 | 
		
			
									
						Stability analysis for stationary solutions of the Mullins–Sekerka flow with boundary contact Enthalten in Mathematische Nachrichten 11.03.2022. 23 S.
					
							 | 
									
			
								
									  
								
			 | 
		
		
			
			 
			
					    					 
							
			 | 
			9 | 
		
			
									
						Analysis and Numerics of Two-Phase Flows of Active Liquid Crystals with Willmore-type Interfacial Energy: A Micro-Macro Approach Sieber, Oliver. - Erlangen : Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 2021
					
							 | 
									
			
								
									  
								
			 | 
		
		
			
			 
			
					    					 
							
			 | 
			10 | 
		
			
									
						Boundary Value Problems for Evolutions of Willmore Type Menzel, Julia. - Regensburg : Universitätsbibliothek Regensburg, 2021
					
							 | 
									
			
								
									  
								
			 |