|
1 |
A Hybrid and Modular Integration Concept for Anomaly Detection in Industrial Control Systems Goetz, Christian. - Darmstadt : Hochschule Darmstadt, 2025
|
|
|
2 |
Control-flow anomaly detection by process mining-based feature extraction and dimensionality reduction Vitale, Francesco. - Aachen : Universitätsbibliothek der RWTH Aachen, 2025
|
|
|
3 |
Exploring NAS for anomaly detection in superconducting cavities of particle accelerators Boukela, Lynda. - Hamburg : Technische Universität Hamburg. Universitätsbibliothek, 2025
|
|
|
4 |
Guided reconstruction with conditioned diffusion models for unsupervised anomaly detection in brain MRIs Behrendt, Finn. - Hamburg : Technische Universität Hamburg. Universitätsbibliothek, 2025
|
|
|
5 |
Intelligent Anomaly Detection for Lane Rendering Using Transformer with Self-Supervised Pretraining and Customized Fine-Tuning Dong, Yongqi. - Aachen : Universitätsbibliothek der RWTH Aachen, 2025
|
|
|
6 |
Novel optical fiber-based method for spatially resolved temperature measurement and thermal anomaly detection in battery modules Krause, Florian Patrick Linus. - Aachen : Universitätsbibliothek der RWTH Aachen, 2025
|
|
|
7 |
Reconstruction-based visual anomaly detection in wound rotor synchronous machine production using convolutional autoencoders and structural similarity Kohler, Markus. - Ingolstadt : Technische Hochschule Ingolstadt, 2025
|
|
|
8 |
Resource‐Efficient Anomaly Detection in Industrial Control Systems With Quantized Recurrent Variational Autoencoder Fährmann, Daniel. - Darmstadt : Universitäts- und Landesbibliothek, 2025
|
|
|
9 |
Hyperparameters optimization of evolving spiking neural network using artificial bee colony for unsupervised anomaly detection Enthalten in Journal of intelligent systems Bd. 34, 2025, Nr. 1. 30 S.
|
|
|
10 |
Exploring seismic mass-movement data with anomaly detection and dynamic time warping Enthalten in EGUsphere 09.09.2025: 1-31. 31 S.
|
|