|
1 |
Deep Learning-based Latency Compensation: From Understanding to Application Halbhuber, David. - Regensburg : Universitätsbibliothek Regensburg, 2025
|
|
|
2 |
Deep Learning for Environmental Remote Sensing Image Understanding: Analyzing Dust and Anthropogenic Objects Across Varying Scales and Densities Michel, Andreas. - Karlsruhe : KIT-Bibliothek, 2025
|
|
|
3 |
Deep learning on graphs Tönshoff, Jan Martin. - Aachen : Universitätsbibliothek der RWTH Aachen, 2024
|
|
|
4 |
Federated and continual learning with deep learning methods for natural language text understanding Chaudhary, Yatin. - München : Universitätsbibliothek der Ludwig-Maximilians-Universität, 2024
|
|
|
5 |
Concepts to Computational Constructs: Advanced Scene Understanding for Heterogeneous Artworks Using Deep Learning Madhu, Prathmesh. - Erlangen : Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 2023
|
|
|
6 |
Understanding deep learning Reimers, Christian. - Jena : Friedrich-Schiller-Universität Jena, 2023
|
|
|
7 |
Understanding recent deep‐learning techniques for identifying collective variables of molecular dynamics Enthalten in Proceedings in applied mathematics and mechanics 19.09.2023. 10 S.
|
|
|
8 |
Deep Learning for Aerial Scene Understanding in High Resolution Remote Sensing Imagery from the Lab to the Wild Hua, Yuansheng. - München : Universitätsbibliothek der TU München, 2022
|
|
|
9 |
Predicting and understanding arterial elasticity from key microstructural features by bidirectional deep learning Linka, Kevin. - Hamburg : Universitätsbibliothek der Technischen Universität Hamburg, 2022
|
|
|
10 |
Understanding and improving robustness and uncertainty estimation in deep learning Stutz, David. - Saarbrücken : Saarländische Universitäts- und Landesbibliothek, 2022
|
|