Katalog der Deutschen Nationalbibliothek

Neuigkeiten

Leichte Bedienung, intuitive Suche: Die Betaversion unseres neuen Katalogs ist online! → Zur Betaversion des neuen DNB-Katalogs

 
 

Ergebnis der Suche nach: Malino*



Treffer 1 von 2656 < < > <



Online Ressourcen
Link zu diesem Datensatz https://d-nb.info/1390899632
Titel Advanced Analytics and Learning on Temporal Data : 10th ECML PKDD Workshop, AALTD 2025, Porto, Portugal, September 19, 2025, Revised Selected Papers / edited by Vincent Lemaire, Georgiana Ifrim, Anthony Bagnall, Simon Malinowski, Patrick Schäfer, Romain Tavenard
Person(en) Lemaire, Vincent (Herausgeber)
Ifrim, Georgiana (Herausgeber)
Bagnall, Anthony (Herausgeber)
Malinowski, Simon (Herausgeber)
Schäfer, Patrick (Herausgeber)
Tavenard, Romain (Herausgeber)
Organisation(en) SpringerLink (Online service) (Sonstige)
Ausgabe 1st ed. 2026
Verlag Cham : Springer Nature Switzerland, Imprint: Springer
Zeitliche Einordnung Erscheinungsdatum: 2026
Umfang/Format Online-Ressource, X, 215 p. 61 illus., 51 illus. in color. : online resource.
Andere Ausgabe(n) Printed edition:: ISBN: 978-3-032-15534-4
Printed edition:: ISBN: 978-3-032-15536-8
Inhalt e-SMOTE: a train set rebalancing algorithm for time series classification -- The Next Motif: Tapping into Recurrence Dynamics and Precursor Signals to Forecast Events of Interest -- Re-framing Time Series Augmentation Through the Lens of Generative Models -- FuelCast: Benchmarking Tabular and Temporal Models for Ship Fuel Consumption -- MoTM: Towards a Foundation Model for Time Series Imputation based on Continuous Modeling -- A Deep Dive into Alternatives to the Global Average Pooling for Time Series Classification -- Adaptive Fine-Tuning via Pattern Specialization for Deep Time Series Forecasting -- Unsupervised Feature Construction for Time Series Anomaly Detection - An Evaluation -- Multi-output Ensembles for Multi-step Forecasting -- Time series extrinsic regression algorithms for forecasting long time series with a short horizon -- Towards a Library for the Analysis of Temporal Sequences -- FiTEM: Fine-tuning Time-series Foundation Models for Selective Forecasting -- T3A-LLM: A Two-Stage Temporal Knowledge Graph Alignment Method Enhanced by LLM
Persistent Identifier URN: urn:nbn:de:101:1-2602210305531.354805982128
DOI: 10.1007/978-3-032-15535-1
URL https://doi.org/10.1007/978-3-032-15535-1
ISBN/Einband/Preis 978-3-032-15535-1
Sprache(n) Englisch (eng)
Beziehungen Lecture Notes in Artificial Intelligence ; 16255
Anmerkungen Hinweis zur Barrierefreiheit: PDF/UA-1
Hinweis zur Barrierefreiheit: Table of contents navigation
Hinweis zur Barrierefreiheit: Single logical reading order
Hinweis zur Barrierefreiheit: Short alternative textual descriptions
Hinweis zur Barrierefreiheit: Use of color is not sole means of conveying information
Hinweis zur Barrierefreiheit: Use of high contrast between text and background color
Hinweis zur Barrierefreiheit: Next / Previous structural navigation
Hinweis zur Barrierefreiheit: All non-decorative content supports reading without sight
Hinweis zur Barrierefreiheit: Accessibility summary: This PDF has been created in accordance with the PDF/UA-1 standard to enhance accessibility, including screen reader support, described non-text content (images, graphs), bookmarks for easy navigation, keyboard-friendly links and forms and searchable, selectable text. We recognize the importance of accessibility, and we welcome queries about accessibility for any of our products. If you have a question or an access need, please get in touch with us at accessibilitysupportspringernature.com. Please note that a more accessible version of this eBook is available as ePub
Hinweis zur Barrierefreiheit: No reading system accessibility options actively disabled
Hinweis zur Barrierefreiheit: Publisher contact for further accessibility information: accessibilitysupportspringernature.com
Sachgruppe(n) 004 Informatik

Online-Zugriff Archivobjekt öffnen




Treffer 1 von 2656
< < > <


E-Mail-IconAdministration