|
1 |
Automated model discovery for tensional homeostasis: Constitutive machine learning in growth and remodeling Holthusen, Hagen. - Hamburg : Technische Universität Hamburg. Universitätsbibliothek, 2025
|
|
|
2 |
Automated model discovery for tensional homeostasis: Constitutive machine learning in growth and remodeling Holthusen, Hagen. - Aachen : Universitätsbibliothek der RWTH Aachen, 2025
|
|
|
3 |
Constitutive Kolmogorov–Arnold Networks (CKANs): Combining accuracy and interpretability in data-driven material modeling Abdolazizi, Kian Philipp. - Hamburg : Technische Universität Hamburg. Universitätsbibliothek, 2025
|
|
|
4 |
Large language models predicting the corrosion inhibition efficiency of magnesium dissolution modulators Busch, Matthias. - Hamburg : Technische Universität Hamburg. Universitätsbibliothek, 2025
|
|
|
5 |
SPiFOL: A Spectral-based physics-informed finite operator learning for prediction of mechanical behavior of microstructures Rajaei Harandi, Ali. - Aachen : Universitätsbibliothek der RWTH Aachen, 2025
|
|
|
6 |
Automated model discovery for human cardiac tissue Martonová, Denisa. - Aachen : Universitätsbibliothek der RWTH Aachen, 2024
|
|
|
7 |
Automated Model Discovery for Tensional Homeostasis: Constitutive Machine Learning in Growth and Remodeling Holthusen, Hagen. - Aachen : Universitätsbibliothek der RWTH Aachen, 2024
|
|
|
8 |
Best-in-class modeling Linka, Kevin. - Aachen : Universitätsbibliothek der RWTH Aachen, 2024
|
|
|
9 |
Discovering uncertainty: Bayesian constitutive artificial neural networks Linka, Kevin. - Aachen : Universitätsbibliothek der RWTH Aachen, 2024
|
|
|
10 |
Machine learning reveals correlations between brain age and mechanics Hoppstädter, Mayra. - Hamburg : Technische Universität Hamburg. Universitätsbibliothek, 2024
|
|