|
1 |
A Hybrid and Modular Integration Concept for Anomaly Detection in Industrial Control Systems Goetz, Christian. - Darmstadt : Hochschule Darmstadt, 2025
|
|
|
2 |
AI-driven anomaly detection in oscilloscope images for post-silicon validation Akash, Kowshic A.. - Hamburg : Technische Universität Hamburg. Universitätsbibliothek, 2025
|
|
|
3 |
Anomaly Detection and Forecasting Techniques and their Applications Scenarios, Challenges and Limits in Industrial Production Settings Soller, Sebastian. - Passau : Universität Passau, 2025
|
|
|
4 |
Anomaly detection for interoperable and modular operating room tables Puder, Andreas. - Karlsruhe : KIT-Bibliothek, 2025
|
|
|
5 |
Anomaly detection for interoperable and modular operating room tables Puder, Andreas. - Karlsruhe : KIT Scientific Publishing, 2025
|
|
|
6 |
Anomaly Detection in Process Monitoring Data of Additive Manufacturing by Neural Networks Holtmann, Jonas. - München : Universitätsbibliothek der TU München, 2025
|
|
|
7 |
Artificial Intelligence-Driven Aesthetic Anomaly Detection for Induction Motors Berlin : Prior Art Publishing GmbH, 2025, Date:2025-05-15; File(MD5):9207F9E8960BF8BDB234D501A5418D43
|
|
|
8 |
Control-flow anomaly detection by process mining-based feature extraction and dimensionality reduction Vitale, Francesco. - Aachen : Universitätsbibliothek der RWTH Aachen, 2025
|
|
|
9 |
Exploring NAS for anomaly detection in superconducting cavities of particle accelerators Boukela, Lynda. - Hamburg : Technische Universität Hamburg. Universitätsbibliothek, 2025
|
|
|
10 |
Guided reconstruction with conditioned diffusion models for unsupervised anomaly detection in brain MRIs Behrendt, Finn. - Hamburg : Technische Universität Hamburg. Universitätsbibliothek, 2025
|
|