Katalog der Deutschen Nationalbibliothek

Neuigkeiten Servicezeiten in Frankfurt am Main ab 1. Dezember 2025: Montag bis Freitag 9–18 Uhr und Samstag 10–16 Uhr
Service hours in Frankfurt am Main from 1 December 2025: Monday to Friday 9:00-18:00 and Saturday 10:00-16:00
 
Neuigkeiten Dienstag 9. Dezember 2025: Die Lesesäle der Deutschen Nationalbibliothek in Leipzig öffnen wegen einer Personalversammlung erst ab 13 Uhr. // Tuesday 9 December 2025: The reading rooms of the German National Library in Leipzig will open at 13:00 due to a staff assembly.
 
 

Ergebnis der Suche nach: tit all "Machine Learning Techniques"



Treffer 2 von 1738 < < > <



Online Ressourcen
Link zu diesem Datensatz https://d-nb.info/1382481306
Titel Advanced Forecasting with Python : Mastering Modern Forecasting Techniques with Machine Learning and Cloud Tools / by Joos Korstanje
Person(en) Korstanje, Joos (Verfasser)
Organisation(en) SpringerLink (Online service) (Sonstige)
Ausgabe 2nd ed. 2025
Verlag Berkeley, CA : Apress, Imprint: Apress
Zeitliche Einordnung Erscheinungsdatum: 2025
Umfang/Format Online-Ressource, XIX, 440 p. 187 illus., 152 illus. in color. : online resource.
Andere Ausgabe(n) Printed edition:: ISBN: 979-8-8688-2027-4
Printed edition:: ISBN: 979-8-8688-2029-8
Inhalt PART I: Machine Learning for Forecasting -- Chapter 1: Models for Forecasting -- Chapter 2: Model Evaluation for Forecasting -- Chapter 3: Model Management and Benchmarking using MLflow -- PART II: Univariate Time Series Models -- Chapter 4: The AR model -- Chapter 5: The MA model -- Chapter 6: The ARMA model -- Chapter 7: The ARIMA model -- Chapter 8: The SARIMA model -- PART III: Multivariate Time Series Models -- Chapter 9: The SARIMAX model -- Chapter 10: The VAR model -- Chapter 11: The VARMAX model -- PART IV: Supervised Models -- Chapter 12: The Linear Regression -- Chapter 13: The Decision Tree Model -- Chapter 14: The kNN model -- Chapter 15: The Random Forest -- Chapter 16: Gradient Boosting with XGBoost, LightGBM, and CatBoost -- Chapter 17: Bayesian Models with pyBATS -- PART V: Neural Networks -- Chapter 18: Neural Networks -- Chapter 19: RNNs using SimpleRNN and GRU -- Chapter 20: LSTM RNNs -- PART VI: Black Box and Cloud Based Models -- Chapter 21: The NBEATS model with Darts -- Chapter 22: The Transformer model with Darts -- Chapter 23: The NeuralProphet model -- Chapter 24: The DeepAR model and AWS Sagemaker AI -- Chapter 25: Uber's Orbit Model -- Chapter 26: AutoML with Microsoft Azure -- Chapter 27: AutoML with Vertex AI on Google Cloud Platform -- Chapter 28: Nixtla Suite and TimeGPT -- Chapter 29: Model Selection
Persistent Identifier URN: urn:nbn:de:101:1-2511250307524.252393503657
DOI: 10.1007/979-8-8688-2028-1
URL https://doi.org/10.1007/979-8-8688-2028-1
ISBN/Einband/Preis 979-8-8688-2028-1
Sprache(n) Englisch (eng)
DDC-Notation 006.31 (maschinell ermittelte DDC-Kurznotation)
Sachgruppe(n) 004 Informatik

Online-Zugriff Archivobjekt öffnen




Treffer 2 von 1738
< < > <


E-Mail-IconAdministration