Katalog der Deutschen Nationalbibliothek

Neuigkeiten Servicezeiten in Frankfurt am Main ab 1. Dezember 2025: Montag bis Freitag 9–18 Uhr und Samstag 10–16 Uhr
Service hours in Frankfurt am Main from 1 December 2025: Monday to Friday 9:00-18:00 and Saturday 10:00-16:00
 
Neuigkeiten

Leichte Bedienung, intuitive Suche: Die Betaversion unseres neuen Katalogs ist online! → Zur Betaversion des neuen DNB-Katalogs

 
 

Ergebnis der Suche nach: tit all "Introduction."



Treffer 161 von 28493 < < > <



Online Ressourcen
Link zu diesem Datensatz https://d-nb.info/1368581234
Titel Introduction to Foundation Models / by Pin-Yu Chen, Sijia Liu
Person(en) Chen, Pin-Yu (Verfasser)
Liu, Sijia (Verfasser)
Organisation(en) SpringerLink (Online service) (Sonstige)
Ausgabe 1st ed. 2025
Verlag Cham : Springer Nature Switzerland, Imprint: Springer
Zeitliche Einordnung Erscheinungsdatum: 2025
Umfang/Format Online-Ressource, XIII, 310 p. 55 illus. : online resource.
Andere Ausgabe(n) Printed edition:: ISBN: 978-3-031-76769-2
Printed edition:: ISBN: 978-3-031-76771-5
Printed edition:: ISBN: 978-3-031-76772-2
Inhalt Part I-Fundamentals of Foundation Models.-Chapter 1-Foundation Models and Generative AI -- Chapter 2-Neural Networks -- Chapter 3- Learning and Generalization of Vision Transformers -- Chapter 4-Formalizing In-Context Learning in Transformers -- Part II Advanced Topics in Foundation Model -- Chapter 5-Automated Visual Prompting -- Chapter 6-Prompting Large Language Models with Privacy -- Chapter 7- Memory-Efficient Fine-Tuning for Foundation Models -- Chapter 8 Large Language Models Meet Time Series -- Chapter 9-Large Language Models Meet Speech Recognition -- Chapter 10-Benchmarking Foundation Models using Synthetic Datasets -- Chapter 11-Machine Unlearning for Foundation Models -- Chapter 12-Part III Trust and Safety in Foundation Models -- Chapter 12-Trustworthiness Evaluation of Large Language Models -- Chapter 13-Attacks and Defenses on Aligned Large Language Models -- Chapter 14- Safety Risks in Fine-tuning Large Language Models -- Chapter15- Watermarks for Large Language Models -- Chapter 16- AI-Generated Text Detection -- Chapter 17- Backdoor Risks in Diffusion Models -- Chapter 18- Prompt Engineering for Safety Red-teaming: A Case Study on Text-to-Image Diffusion Models
Persistent Identifier URN: urn:nbn:de:101:1-2506130407544.582498942985
DOI: 10.1007/978-3-031-76770-8
URL https://doi.org/10.1007/978-3-031-76770-8
ISBN/Einband/Preis 978-3-031-76770-8
Sprache(n) Englisch (eng)
DDC-Notation 005.1028 (maschinell ermittelte DDC-Kurznotation)
Sachgruppe(n) 004 Informatik

Online-Zugriff Archivobjekt öffnen




Treffer 161 von 28493
< < > <


E-Mail-IconAdministration