Katalog der Deutschen Nationalbibliothek

Neuigkeiten Servicezeiten in Frankfurt am Main ab 1. Dezember 2025: Montag bis Freitag 9–18 Uhr und Samstag 10–16 Uhr
Service hours in Frankfurt am Main from 1 December 2025: Monday to Friday 9:00-18:00 and Saturday 10:00-16:00
 
Neuigkeiten Dienstag 9. Dezember 2025: Die Lesesäle der Deutschen Nationalbibliothek in Leipzig öffnen wegen einer Personalversammlung erst ab 13 Uhr. // Tuesday 9 December 2025: The reading rooms of the German National Library in Leipzig will open at 13:00 due to a staff assembly.
 
 

Ergebnis der Suche nach: Malino*



Treffer 25 von 2152 < < > <



Online Ressourcen
Link zu diesem Datensatz https://d-nb.info/1342299841
Art des Inhalts Konferenzschrift
Titel Artificial Neural Networks and Machine Learning – ICANN 2024 : 33rd International Conference on Artificial Neural Networks, Lugano, Switzerland, September 17–20, 2024, Proceedings, Part II / edited by Michael Wand, Kristína Malinovská, Jürgen Schmidhuber, Igor V. Tetko
Person(en) Wand, Michael (Herausgeber)
Malinovská, Kristína (Herausgeber)
Schmidhuber, Jürgen (Herausgeber)
Tetko, Igor (Herausgeber)
Organisation(en) SpringerLink (Online service) (Sonstige)
Ausgabe 1st ed. 2024
Verlag Cham : Springer Nature Switzerland, Imprint: Springer
Zeitliche Einordnung Erscheinungsdatum: 2024
Umfang/Format Online-Ressource, XXXIV, 464 p. 145 illus., 141 illus. in color. : online resource.
Andere Ausgabe(n) Printed edition:: ISBN: 978-3-031-72334-6
Printed edition:: ISBN: 978-3-031-72336-0
Inhalt -- Computer Vision: Classification. -- A WEAKLY SUPERVISED PART DETECTION METHOD FOR ROBUST FINE-GRAINED CLASSIFICATION. -- An Energy Sampling Replay-Based Continual Learning Framework. -- Coarse-to-Fine Granularity in MultiScale FeatureFusion Network for SAR Ship Classification. .-Multi-scale convolutional attention fuzzy broad network for few-shot hyperspectral image classification. -- Self Adaptive Threshold Pseudo-labeling and Unreliable Sample Contrastive Loss for Semi-supervised Image Classification. -- Computer Vision: Object Detection. -- CIA-Net:Cross-modal Interaction and Depth Quality-Aware Network for RGB-D Salient Object Detection. -- CPH DETR: Comprehensive Regression Loss for End-to-End Object Detection. -- DecoratingFusion: A LiDAR-Camera Fusion Network with the Combination of Point-level and Feature-level Fusion. -- EMDFNet: Efficient Multi-scale and Diverse Feature Network for Traffic Sign Detection. -- Global-Guided Weighted Enhancement for Salient Object Detection. -- KDNet: Leveraging Vision-Language Knowledge Distillation for Few-Shot Object Detection. -- MUFASA: Multi-View Fusion and Adaptation Network with Spatial Awareness for Radar Object Detection. -- One-Shot Object Detection with 4D-Correlation and 4D-Attention. -- Small Object Detection Based on Bidirectional Feature Fusion and Multi-scale Distillation. .-SRA-YOLO: Spatial Resolution Adaptive YOLO for Semi-Supervised Cross-Domain Aerial Object Detection. -- Computer Vision: Security and Adversarial Attacks. -- BiFAT: Bilateral Filtering and Attention Mechanisms in a Two-Stream Model for Deepfake Detection. -- EL-FDL: Improving Image Forgery Detection and Localization via Ensemble Learning. -- Generalizable Deepfake Detection with Unbiased Feature Extraction and Low-level Forgery Enhancement. -- Generative Universal Nullifying Perturbation for Countering Deepfakes through Combined Unsupervised Feature Aggregation. -- Noise-NeRF: Hide Information in Neural Radiance Field using Trainable Noise. -- Unconventional Face Adversarial Attack. Computer Vision: Image EnhancementComputer Vision: Image Enhancement. -- Computer Vision: Image Enhancement. -- A Study in Dataset Pruning for Image Super-Resolution. -- EDAFormer:Enhancing Low-Light Images with a Dual-Attention Transformer. -- Image Matting Based on Deep Equilibrium Models. -- Computer Vision: 3D Methods. -- ControlNeRF: Text-Driven 3D Scene Stylization via Diffusion Model. -- Interactive Color Manipulation in NeRF: A Point Cloud and Palette-driven Approach. -- Multimodal Monocular Dense Depth Estimation with Event-Frame Fusion using Transformer. -- SAM-NeRF: NeRF-based 3D Instance Segmentation with Segment Anything Model. -- Towards High-Accuracy Point Cloud Registration with Channel Self-Attention and Angle Invariance
Persistent Identifier URN: urn:nbn:de:101:1-2409180421477.340457086915
DOI: 10.1007/978-3-031-72335-3
URL https://doi.org/10.1007/978-3-031-72335-3
ISBN/Einband/Preis 978-3-031-72335-3
Sprache(n) Englisch (eng)
Beziehungen Lecture Notes in Computer Science ; 15017
DDC-Notation 004.3 (maschinell ermittelte DDC-Kurznotation)
Sachgruppe(n) 004 Informatik

Online-Zugriff Archivobjekt öffnen




Treffer 25 von 2152
< < > <


E-Mail-IconAdministration