Katalog der Deutschen Nationalbibliothek

Neuigkeiten Servicezeiten in Frankfurt am Main ab 1. Dezember 2025: Montag bis Freitag 9–18 Uhr und Samstag 10–16 Uhr
Service hours in Frankfurt am Main from 1 December 2025: Monday to Friday 9:00-18:00 and Saturday 10:00-16:00
 
Neuigkeiten Dienstag 9. Dezember 2025: Die Lesesäle der Deutschen Nationalbibliothek in Leipzig öffnen wegen einer Personalversammlung erst ab 13 Uhr. // Tuesday 9 December 2025: The reading rooms of the German National Library in Leipzig will open at 13:00 due to a staff assembly.
 
 

Ergebnis der Suche nach: Malino*



Treffer 27 von 2152 < < > <



Online Ressourcen
Link zu diesem Datensatz https://d-nb.info/134229968X
Art des Inhalts Konferenzschrift
Titel Artificial Neural Networks and Machine Learning – ICANN 2024 : 33rd International Conference on Artificial Neural Networks, Lugano, Switzerland, September 17–20, 2024, Proceedings, Part IV / edited by Michael Wand, Kristína Malinovská, Jürgen Schmidhuber, Igor V. Tetko
Person(en) Wand, Michael (Herausgeber)
Malinovská, Kristína (Herausgeber)
Schmidhuber, Jürgen (Herausgeber)
Tetko, Igor (Herausgeber)
Organisation(en) SpringerLink (Online service) (Sonstige)
Ausgabe 1st ed. 2024
Verlag Cham : Springer Nature Switzerland, Imprint: Springer
Zeitliche Einordnung Erscheinungsdatum: 2024
Umfang/Format Online-Ressource, XXXIV, 428 p. 138 illus., 136 illus. in color. : online resource.
Andere Ausgabe(n) Printed edition:: ISBN: 978-3-031-72340-7
Printed edition:: ISBN: 978-3-031-72342-1
Inhalt -- Brain-inspired ComputingBrain-inspired Computing. -- A Multiscale Resonant Spiking Neural Network for Music Classification. -- Masked Image Modeling as a Framework for Self-Supervised Learning across Eye Movements. -- Serial Order Codes for Dimensionality Reduction in the Learning of Higher-Order Rules and Compositionality in Planning. -- Sparsity aware Learning in Feedback-driven Differential Recurrent Neural Networks. -- Towards Scalable GPU-Accelerated SNN Training via Temporal Fusion. -- Cognitive and Computational Neuroscience. -- Analysis of a Generative Model of Episodic Memory Based on Hierarchical VQ-VAE and Transformer. -- Biologically-plausible Markov Chain Monte Carlo Sampling from Vector Symbolic Algebra-encoded Distributions. -- Dynamic Graph for Biological Memory Modeling: A System-Level Validation. -- EEG features learned by convolutional neural networks reflect alterations of social stimuli processing in autism. -- Estimate of the Storage Capacity of q-Correlated Patterns in Hopfield Neural Networks. -- An Accuracy-Shaping Mechanism for Competitive Distributed Learning. -- Explainable Artificial Intelligence. -- Counterfactual Contrastive Learning for Fine Grained Image Classification. -- Enhancing Counterfactual Image Generation Using Mahalanobis Distance with Distribution Preferences in Feature Space. -- Exploring Task-Specific Dimensions in Word Embeddings Through Automatic Rule Learning. -- Generally-Occurring Model Change for Robust Counterfactual Explanations. -- Model Based Clustering of Time Series Utilizing Expert ODEs. -- Towards Generalizable and Interpretable AI-Modified Image Detectors. -- Understanding Deep Networks via Multiscale Perturbations. -- Robotics. -- Details Make a Difference: Object State-Sensitive Neurorobotic Task Planning. -- Neural Formation A*: A Knowledge-Data Hybrid-Driven Path Planning Algorithm for Multi-agent Formation Cooperation. -- Robust Navigation for Unmanned Surface Vehicle Utilizing Improved Distributional Soft Actor-Critic. -- When Robots Get Chatty: Grounding Multimodal Human-Robot Conversation and Collaboration. -- Reinforcement Learning. -- Asymmetric Actor-Critic for Adapting to Changing Environments in Reinforcement Learning. -- Building surrogate models using trajectories of agents trained by Reinforcement Learning. -- Demand-Responsive Transport Dynamic Scheduling Optimization Based on Multi-Agent Reinforcement Learning under Mixed Demand. -- Dual Action Policy for Robust Sim-to-Real Reinforcement Learning. -- Enhancing Visual Generalization in Reinforcement Learning with Cycling Augmentation. -- Speeding up Meta-Exploration via Latent Representation
Persistent Identifier URN: urn:nbn:de:101:1-2409180419512.516402033654
DOI: 10.1007/978-3-031-72341-4
URL https://doi.org/10.1007/978-3-031-72341-4
ISBN/Einband/Preis 978-3-031-72341-4
Sprache(n) Englisch (eng)
Beziehungen Lecture Notes in Computer Science ; 15019
DDC-Notation 004.3 (maschinell ermittelte DDC-Kurznotation)
Sachgruppe(n) 004 Informatik

Online-Zugriff Archivobjekt öffnen




Treffer 27 von 2152
< < > <


E-Mail-IconAdministration