Katalog der Deutschen Nationalbibliothek

Neuigkeiten Donnerstag, 11. September 2025: Die Deutsche Nationalbibliothek öffnet wegen eines Beschäftigtentreffens an beiden Standorten erst um 15 Uhr. // Thursday, 11 September 2025: The German National Library will not open until 15:00 due to a staff meeting at both locations.
 
Neuigkeiten Vom 10. September 2025, 13 Uhr, bis 11. September 2025, 22 Uhr, kann es zu Einschränkungen bei der Bereitstellung von Medienwerken kommen. Wir informieren Sie per E-Mail über den aktuellen Stand Ihrer Bestellungen. // From 13:00 on 10 September 2025 until 22:00 on 11 September 2025, there may be restrictions on the provision of media works. We will inform you by email about the current status of your orders.
 
 

Ergebnis der Suche nach: tit all "Models in Science"



Treffer 7 von 492 < < > <



Online Ressourcen
Link zu diesem Datensatz https://d-nb.info/1343902029
Art des Inhalts Konferenzschrift
Titel Foundation Models for General Medical AI : Second International Workshop, MedAGI 2024, Held in Conjunction with MICCAI 2024, Marrakesh, Morocco, October 6, 2024, Proceedings / edited by Zhongying Deng, Yiqing Shen, Hyunwoo J. Kim, Won-Ki Jeong, Angelica I. Aviles-Rivero, Junjun He, Shaoting Zhang
Person(en) Deng, Zhongying (Herausgeber)
Shen, Yiqing (Herausgeber)
Kim, Hyunwoo J. (Herausgeber)
Jeong, Won-Ki (Herausgeber)
Aviles-Rivero, Angelica I. (Herausgeber)
He, Junjun (Herausgeber)
Zhang, Shaoting (Herausgeber)
Organisation(en) SpringerLink (Online service) (Sonstige)
Ausgabe 1st ed. 2025
Verlag Cham : Springer Nature Switzerland, Imprint: Springer
Zeitliche Einordnung Erscheinungsdatum: 2025
Umfang/Format Online-Ressource, X, 174 p. 56 illus., 52 illus. in color. : online resource.
Andere Ausgabe(n) Printed edition:: ISBN: 978-3-031-73470-0
Printed edition:: ISBN: 978-3-031-73472-4
Inhalt -- FastSAM-3DSlicer: A 3D-Slicer Extension for 3D Volumetric Segment Anything Model with Uncertainty Quantification. -- The Importance of Downstream Networks in Digital Pathology Foundation Models. -- Temporal-spatial Adaptation of Promptable SAM Enhance Accuracy and Generalizability of cine CMR Segmentation. -- Navigating Data Scarcity using Foundation Models: A Benchmark of Few-Shot and Zero-Shot Learning Approaches in Medical Imaging. -- AutoEncoder-Based Feature Transformation with Multiple Foundation Models in Computational Pathology. -- OSATTA: One-Shot Automatic Test Time Augmentation for Domain Adaptation. -- Automating MedSAM by Learning Prompts with Weak Few-Shot Supervision. -- SAT-Morph: Unsupervised Deformable Medical Image Registration using Vision Foundation Models with Anatomically Aware Text Prompt. -- Promptable Counterfactual Diffusion Model for Unified Brain Tumor Segmentation and Generation with MRIs. -- D- Rax: Domain-specific Radiologic assistant leveraging multi-modal data and eXpert model predictions. -- Optimal Prompting in SAM for Few-Shot and Weakly Supervised Medical Image Segmentation. -- UniCrossAdapter: Multimodal Adaptation of CLIP for Radiology Report Generation. -- TUMSyn: A Text-Guided Generalist model for Customized Multimodal MR Image Synthesis. -- SAMU: An Efficient and Promptable Foundation Model for Medical Image Segmentation. -- Anatomical Embedding-Based Training Method for Medical Image Segmentation Foundation Models. -- Boosting Vision-Language Models for Histopathology Classification: Predict all at once. -- MAGDA: Multi-agent guideline-driven diagnostic assistance
Persistent Identifier URN: urn:nbn:de:101:1-2410030426375.611526663149
DOI: 10.1007/978-3-031-73471-7
URL https://doi.org/10.1007/978-3-031-73471-7
ISBN/Einband/Preis 978-3-031-73471-7
Sprache(n) Englisch (eng)
Beziehungen Lecture Notes in Computer Science ; 15184
DDC-Notation 616.075 (maschinell ermittelte DDC-Kurznotation)
Sachgruppe(n) 610 Medizin, Gesundheit

Online-Zugriff Archivobjekt öffnen




Treffer 7 von 492
< < > <


E-Mail-IconAdministration