Katalog der Deutschen Nationalbibliothek
Ergebnis der Suche nach: dcs=514*
![]() |
|
Link zu diesem Datensatz | https://d-nb.info/gnd/4630863-5 |
Sachbegriff | Lie-Algebroid |
Quelle | Internet |
Erläuterungen | Definition: A Lie algebroid is a vector bundle A (smooth, real and finite dimensional unless otherwise specified), the module of sections of which has a Lie algebra structure over R which interacts with the module structure via a Leibniz rule with respect to a bracket-preserving vector bundle map (the anchor) from A to the tangent bundle of the base. The term Lie algebroid was introduced in 1966 by Pradines. There is an alternative usage in algebraic geometry; but this rarely causes confusion. |
Oberbegriffe | Vektorraumbündel |
DDC-Notation | 514.224 |
Systematik | 28 Mathematik |
Typ | Allgemeinbegriff (saz) |
