Katalog der Deutschen Nationalbibliothek
Ergebnis der Suche nach: "Machine Learning"
![]() |
|
Link zu diesem Datensatz | https://d-nb.info/1370584717 |
Art des Inhalts | Konferenzschrift |
Titel | Computational Science – ICCS 2025 Workshops : 25th International Conference, Singapore, Singapore, July 7–9, 2025, Proceedings, Part IV / edited by Maciej Paszynski, Amanda S. Barnard, Yongjie Jessica Zhang |
Person(en) |
Paszyński, Maciej (Herausgeber) Barnard, Amanda (Herausgeber) Zhang, Yongjie Jessica (Herausgeber) |
Organisation(en) | SpringerLink (Online service) (Sonstige) |
Ausgabe | 1st ed. 2025 |
Verlag | Cham : Springer Nature Switzerland, Imprint: Springer |
Zeitliche Einordnung | Erscheinungsdatum: 2025 |
Umfang/Format | Online-Ressource, XXV, 382 p. 119 illus., 108 illus. in color. : online resource. |
Andere Ausgabe(n) |
Printed edition:: ISBN: 978-3-031-97566-0 Printed edition:: ISBN: 978-3-031-97568-4 |
Inhalt | Machine Learning and Data Assimilation for Dynamical Systems -- Cluster-based Reduced-order Modelling and Control for Chaotic Systems with Extreme Events -- First Experiences on Exploiting Physics-Informed Neural Networks for Approximating Solutions of a Biological Model -- A Machine Learning System for Energy Forecasting with Feature Importance Analysis -- Latent Three-dimensional Variational Data Assimilation with Convolutional Autoencoder and LSTM for Flood Forecasting -- Online Model Learning with Data-assimilated Reservoir Computers -- Data-Assimilated Model-Based Reinforcement Learning for Partially Observed Chaotic Flows -- SHAP-prioritised Machine Learning for Diagnostic Grade Prediction of Lung Function -- Turn Detection in Alpine Skiing Using Smartphone Sensors -- Assimilation of Data for Dynamic Digital Twins by Learning Covariance Information -- Multi-Criteria Decision-Making: Methods, Applications, and Innovations -- Issues Importance Analysis for Reaching High-Quality Consensus in Preference-Based Conflict Scenarios -- Integrating Conflict Analysis and Rule-Based Systems for Dispersed Data Classification -- Multicriteria Framework for Digital Content Design and Evaluation in Cross-Generational Targeting -- Integrating Habituation Effects with UCB and Softmax Multi-Armed Bandit Algorithms for Optimized Digital Content Delivery -- Computational Risk Assessment in Water Distribution Network -- Preserving Informative Content of Condition Attributes in Data Transformations for CRSA -- Using SSP-VIKOR in Sustainable Share of Renewable Energy Sources Assessment -- Decision-Making of Homogeneous Multiple Classifiers Based on Attribute Characterisation by Discretisation -- New Multi-Criteria Approach to Sustainable Development Assessment -- Compromise Fuzzy Ranking: A Novel Method for Reaching Consensus in Complex Multi-criteria Decision Problems -- A New Approach to Large-scale Multi-criteria Group Decision-making Based on the RANCOM Method -- Towards Sustainable Decision Making: New Reference Point-Based MCDA Method -- An Adaptive RANCOM-ST Method for Bias Reduction using Statistical Thresholds -- Strong Sustainability Paradigm in TOPSIS Method: New Approach to Wind Farm Selection Problem -- Aspects of Implementing RPA in an IT Company -- Evaluating Sufficiency Practices for Sustainable Competitiveness using AHP-grey Analysis -- Actionable Fire Modeling in Firemap for Extended Attack Decision Support -- The Role of Preference Reidentification in MCDA: Comparing Weight-Based, Normalization, and Reference-Object Approaches -- Subjective Equal Criteria Influence Approach (SECIA): A Novel Extended Approach to Weights Determination -- Local Markovian Consensus for Ranking Aggregation: A Novel Approach to Consensus Ranking with Weak Ordinal Dominance |
Persistent Identifier |
URN: urn:nbn:de:101:1-2507040406440.522935289005 DOI: 10.1007/978-3-031-97567-7 |
URL | https://doi.org/10.1007/978-3-031-97567-7 |
ISBN/Einband/Preis | 978-3-031-97567-7 |
Sprache(n) | Englisch (eng) |
Beziehungen | Lecture Notes in Computer Science ; 15910 |
Sachgruppe(n) | 370 Erziehung, Schul- und Bildungswesen |
Online-Zugriff | Archivobjekt öffnen |
