|
11 |
Interaction of Mean Curvature Flow and a Diffusion Equation Bürger, Felicitas. - Regensburg : Universitätsbibliothek Regensburg, 2021
|
|
|
12 |
Sharp and diffuse interface models for the evolution of surfaces that are immersed in fluids and coupled through surfactants Werner, Philipp. - Erlangen : Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 2021
|
|
|
13 |
Wie mathematische Modelle helfen, das Wachstum von Tumoren zu verstehen Enthalten in Deutsche Mathematiker-Vereinigung: Mitteilungen der Deutschen Mathematiker-Vereinigung Bd. 29, 2021, Nr. 2: 62-67. 6 S.
|
|
|
14 |
Shape and topology optimization involving the eigenvalues of an elastic structure: A multi-phase-field approach Enthalten in Advances in nonlinear analysis Bd. 11, 2021, Nr. 1: 159-197. 39 S.
|
|
|
15 |
Cahn-Hilliard-Brinkman models for tumour growth: Modelling, analysis and optimal control Ebenbeck, Matthias. - Regensburg : Universitätsbibliothek Regensburg, 2020
|
|
|
16 |
On a degenerate parabolic system describing the mean curvature flow of rotationally symmetric closed surfaces Enthalten in Journal of evolution equations 2.4.2020: 1-24
|
|
|
17 |
Evolution of interfaces in two-phase problems with ninety degree contact angle Rauchecker, Maximilian. - Regensburg : Universitätsbibliothek Regensburg, 2019
|
|
|
18 |
Surface diffusion flow of triple junction clusters in higher space dimensions Gößwein, Michael. - Regensburg : Universitätsbibliothek Regensburg, 2019
|
|
|
19 |
Surface, Bulk, and Geometric Partial Differential Equations: Interfacial, stochastic, non-local and discrete structures Zürich : EMS Publ. House, 2019
|
|
|
20 |
Analysis of Cahn‐Hilliard‐Brinkman models for tumour growth Enthalten in Proceedings in applied mathematics and mechanics Bd. 19, 2019, Nr. 1. 2 S.
|
|