|
11 |
An autoencoder-based deep learning approach for clustering time series data Enthalten in SN applied sciences Bd. 2, 20.4.2020, Nr. 5, date:5.2020: 1-25
|
|
|
12 |
Bayesian hierarchical clustering for microarray time series data with replicates and outlier measurements Enthalten in BMC bioinformatics Bd. 12, 13.10.2011, Nr. 1, date:12.2011: 1-12
|
|
|
13 |
Big time series data forecasting based on deep autoencoding and clustering Enthalten in Cluster computing Bd. 28, 25.2.2025, Nr. 4, date:8.2025: 1-26
|
|
|
14 |
Clustering Activity–Travel Behavior Time Series using Topological Data Analysis Enthalten in Journal of big data analytics in transportation Bd. 1, 23.10.2019, Nr. 2-3, date:12.2019: 109-121
|
|
|
15 |
Clustering Time Series Gene Expression Data Based on Sum-of-Exponentials Fitting Enthalten in European Association for Speech, Signal and Image Processing: EURASIP journal on advances in signal processing Bd. 2005, 31.5.2005, Nr. 8, date:12.2005: 1-15
|
|
|
16 |
Clustering Time-Series Gene Expression Data Using Smoothing Spline Derivatives Enthalten in European Association for Speech, Signal and Image Processing: EURASIP journal on bioinformatics and systems biology Bd. 2007, 18.6.2007, Nr. 1, date:12.2007: 1-10
|
|
|
17 |
CLUSTERING TIME SERIES OF REPEATED SCAN DATA OF SANDY BEACHES Enthalten in The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences Bd. XLII-2/W13, 2019: 1039-1046
|
|
|
18 |
Constrained Fourier estimation of short-term time-series gene expression data reduces noise and improves clustering and gene regulatory network predictions Enthalten in BMC bioinformatics Bd. 23, 9.8.2022, Nr. 1, date:12.2022: 1-21
|
|
|
19 |
Data Change Exploration Using Time Series Clustering Enthalten in Datenbank-Spektrum Bd. 18, 25.5.2018, Nr. 2, date:7.2018: 79-87
|
|
|
20 |
DTWscore: differential expression and cell clustering analysis for time-series single-cell RNA-seq data Enthalten in BMC bioinformatics Bd. 18, 23.5.2017, Nr. 1, date:12.2017: 1-14
|
|