|
21 |
Behavior prediction for autonomous driving using graph neural networks Schmidt, Julian. - Ulm : Universität Ulm, Institut für Mess-, Regel- und Mikrotechnik, 2024
|
|
|
22 |
Biologically inspired hexagonal deep learning for hexagonal image processing Schlosser, Tobias. - Chemnitz : Universitätsverlag Chemnitz, 2024
|
|
|
23 |
Causal inference and causal machine learning for data-driven management Wasserbacher, Helmut. - Hamburg : Verlag Dr. Kovač, 2024
|
|
|
24 |
Combination of stochastic modeling and machine learning for probabilistic weather forecasting and power grid management Schaumann, Peter. - Ulm, 2024
|
|
|
25 |
"Comparison of MRI sequences to predict ATRX status using radiomics-based machine learning" Münster, 2024
|
|
|
26 |
Computational studies of transition metal catalysts and the exploration of structure-reactivity relationships using machine learning approaches Huang, Tianbai. - Jena, 2024
|
|
|
27 |
Data-based analyses of manufacturing components Finkeldey, Felix. - Düren : Shaker Verlag, 2024
|
|
|
28 |
Data-driven protein engineering Siedhoff, Niklas. - Aachen, [2024]
|
|
|
29 |
Datengetriebene Strukturierung von NC-Zerspanprozessen Ochel, Janis. - Aachen : Apprimus Verlag, 2024, 1. Auflage
|
|
|
30 |
[Rule(s) of recommendation: what the making of a recommender system can tell us about the difficult relation between social order and machine learning] Democratic algorithms: ethnography of a public recommender system Poechhacker, Nikolaus. - Lüneburg : meson press eG, 2024
|
|