Katalog der Deutschen Nationalbibliothek

Neuigkeiten

Leichte Bedienung, intuitive Suche: Die Betaversion unseres neuen Katalogs ist online! → Zur Betaversion des neuen DNB-Katalogs

 
 
 


Ergebnis der Suche nach: "Machine Learning"
im Bestand: Gesamter Bestand

251 - 260 von 3500
<< < > >>


Online Ressourcen 251 Relaxing Supervision Requirements for Tomographic Data Analysis with Machine Learning
Zharov, Yaroslav. - Heidelberg : Universitätsbibliothek Heidelberg, 2025
Online Ressource
Online Ressourcen 252 Remote sensing and machine learning-based solutions for ecosystem management and the provision of large-scale and long-term vegetation information
Schulz, Christian. - Berlin : Technische Universität Berlin, 2025
Online Ressource
Online Ressourcen 253 Representation Learning for Biomedical Text Mining
Sänger, Mario. - Berlin : Humboldt-Universität zu Berlin, 2025
Online Ressource
Online Ressourcen 254 Representational alignment of humans and machines for computer vision
Muttenthaler, Lukas. - Berlin : Technische Universität Berlin, 2025
Online Ressource
Online Ressourcen 255 Robust and Explainable Face Morphing Detection and High Quality Morphing
Seibold, Clemens Peter. - Berlin : Humboldt-Universität zu Berlin, 2025
Online Ressource
Online Ressourcen 256 Robust Methods for Distributed Learning
Schroth, Christian. - Darmstadt : Universitäts- und Landesbibliothek, 2025
Online Ressource
Online Ressourcen 257 Robustness of reinforcement learning based autonomous driving technologies
Hart, Fabian. - Dresden : Technische Universität Dresden, 2025
Online Ressource
Online Ressourcen 258 Safe Reinforcement Learning for Robotics: From Exploration to Policy Learning
Liu, Puze. - Darmstadt : Universitäts- und Landesbibliothek, 2025
Online Ressource
Online Ressourcen 259 Safer AI via Exploiting the Structure of Learned Systems for Monitoring, Verification, Abstraction, Representations, and Explainability
Mohr, Stefanie. - München : Universitätsbibliothek der TU München, 2025
Online Ressource
Online Ressourcen 260 Scene to Scenario: Data-driven Pipeline for Extracting and Re-Simulation of Test Scenarios for Highly Automated Driving Functions
Zipfl, Maximilian. - Karlsruhe : KIT-Bibliothek, 2025
Online Ressource


251 - 260 von 3500
<< < > >>


E-Mail-IconAdministration