|
11 |
Crash testing machine learning force fields for molecules, materials, and interfaces: model analysis in the TEA Challenge 2023† Poltavsky, Igor. - Erlangen : Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 2025
|
|
|
12 |
Crash testing machine learning force fields for molecules, materials, and interfaces: molecular dynamics in the TEA challenge 2023† Poltavsky, Igor. - Erlangen : Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 2025
|
|
|
13 |
Detection of particle contamination and lubrication outage in journal bearings in wind turbine gearboxes using surface acoustic wave measurements and machine learning Decker, Thomas Matthias. - Aachen : Universitätsbibliothek der RWTH Aachen, 2025
|
|
|
14 |
Discussion on Assessing Predictability of Environmental Time Series With Statistical and Machine Learning Models Steland, Ansgar. - Aachen : Universitätsbibliothek der RWTH Aachen, 2025
|
|
|
15 |
Dynamic deep learning based super-resolution for the shallow water equations Witte, Maximilian. - Hamburg : Technische Universität Hamburg. Universitätsbibliothek, 2025
|
|
|
16 |
Editorial: Integrating machine learning with physics-based modeling of physiological systems Lee, Jae H.. - Erlangen : Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 2025
|
|
|
17 |
Evaluating Recycling Initiatives for Landfill Diversion in Developing Economies Using Integrated Machine Learning Techniques Adedara, Muyiwa Lawrence. - Kiel : Universitätsbibliothek Kiel, 2025
|
|
|
18 |
Flexible development and evaluation of machine‐learning‐supported optimal control and estimation methods via HILO‐MPC Pohlodek, Johannes. - Darmstadt : Universitäts- und Landesbibliothek, 2025
|
|
|
19 |
Flugmedizinische Risikostratifizierung – gestern, heute, morgen Güttler, Norbert. - Bonn : Fachinformationszentrum der Bundeswehr, 2025
|
|
|
20 |
Forecasting of residential unit's heat demands: a comparison of machine learning techniques in a real-world case study Kemper, Neele. - Augsburg : Universität Augsburg, 2025
|
|