|
111 |
A framework for explainable root cause analysis in manufacturing systems – combining machine learning, explainable artificial intelligence and the Ishikawa model for industrial manufacturing Kiefer, Daniel. - Reutlingen : Hochschule Reutlingen, 2025
|
|
|
112 |
A framework for sensor fault detection and management in low-power IoT edge devices Attarha, Shadi. - Bremen : Staats- und Universitätsbibliothek Bremen, 2025
|
|
|
113 |
A framework to evaluate machine learning crystal stability predictions Riebesell, Janosh. - Berlin : Bundesanstalt für Materialforschung und -prüfung (BAM), 2025
|
|
|
114 |
A Kanban-based Approach to Manage Machine Learning Projects in Manufacturing Schreier, Ulf. - Furtwangen : Hochschule Furtwangen, 2025
|
|
|
115 |
A Machine Learning and Explainable AI Framework Tailored for Unbalanced Experimental Catalyst Discovery Semnani, Parastoo. - Berlin : Technische Universität Berlin, 2025
|
|
|
116 |
A machine learning-based framework and open-source software for non intrusive water monitoring Gross, Marie-Philine. - Berlin : Technische Universität Berlin, 2025
|
|
|
117 |
A machine learning based regulatory risk index for cryptocurrencies Ni, Xinwen. - Berlin : Humboldt-Universität zu Berlin, 2025
|
|
|
118 |
A new design method to account for interlaminar stresses in laminated composites using machine learning Gadinger, Marc. - Hamburg : Technische Universität Hamburg. Universitätsbibliothek, 2025
|
|
|
119 |
A novel framework for uncertainty qantification via proper scores for classification and beyond Gruber, Sebastian G.. - Frankfurt am Main : Universitätsbibliothek Johann Christian Senckenberg, 2025
|
|
|
120 |
A novel machine-learning approach to unlock technical lignin classification by NIR spectroscopy - bench to handheld Fink, Friedrich. - Berlin : Bundesanstalt für Materialforschung und -prüfung (BAM), 2025
|
|