|
1611 |
Feasibility study on machine learning methods for prediction of process‑related parameters during WAAM process using SS‑316L filler material Subadra, Sharath P.. - Hamburg : Hochschule für Angewandte Wissenschaften Hamburg, 2024
|
|
|
1612 |
Forecasting Bitcoin returns: Econometric time series analysis vs. machine learning Berger, Theo. - Hannover : Hochschule Hannover, 2024
|
|
|
1613 |
From abstraction to design: Interpretable tree-based machine learning for stable thermoacoustic system layout Kuznetsova, Maria. - Berlin : Technische Universität Berlin, 2024
|
|
|
1614 |
Galvanic Skin Response and Photoplethysmography for Stress Recognition Using Machine Learning and Wearable Sensors Nechyporenko, Alina. - Wildau : Technische Hochschule Wildau, 2024
|
|
|
1615 |
Große Sprachmodelle. Machine Learning als Lese- und Schreibermöglichung Bajohr, Hannes. - Marburg : Philipps-Universität Marburg, 2024
|
|
|
1616 |
Historical insights at scale: A corpus-wide machine learning analysis of early modern astronomic tables Eberle, Oliver. - Berlin : Technische Universität Berlin, 2024
|
|
|
1617 |
Holistic image-based analysis of damage on concrete surfaces—A multifaceted approach based on supervised machine learning Özcan, Baris. - Aachen : Universitätsbibliothek der RWTH Aachen, 2024
|
|
|
1618 |
How Interpretable Machine Learning Can Benefit Process Understanding in the Geosciences Jiang, Shijie. - Jena : Friedrich-Schiller-Universität Jena, 2024
|
|
|
1619 |
How to treat mixed behavior segments in supervised machine learning of behavioural modes from inertial measurement data Resheff, Yehezkel S.. - Konstanz : KOPS Universität Konstanz, 2024
|
|
|
1620 |
How valid are trust survey measures? New insights from open-ended probing data and supervised machine learning Landesvatter, Camille. - Mannheim : Universitätsbibliothek Mannheim, 2024
|
|