Katalog der Deutschen Nationalbibliothek

Neuigkeiten

Leichte Bedienung, intuitive Suche: Die Betaversion unseres neuen Katalogs ist online! → Zur Betaversion des neuen DNB-Katalogs

 
 
 


Ergebnis der Suche nach: tit all "Support Vector Machines"
im Bestand: Gesamter Bestand

201 - 210 von 490
<< < > >>


Artikel 201 Modelling Proteolytic Enzymes With Support Vector Machines
Enthalten in Journal of integrative bioinformatics Bd. 8, 2011, Nr. 3: 1-15. 15 S.
Online Ressource
Artikel 202 Predictions of chromatographic retention indices of alkylphenols with support vector machines and multiple linear regression
Enthalten in Journal of separation science Bd. 32, 2010, Nr. 23‐24: 4133-4142. 10 S.
Online Ressource
Artikel 203 Combining ASTER multispectral imagery analysis and support vector machines for rapid and cost-effective post-fire assessment: a case study from the Greek wildland fires of 2007
Enthalten in Natural hazards and earth system sciences Bd. 10, 2010, Nr. 2: 305-317
Online Ressource
Artikel 204 QSAR Studies of HEPT Derivatives Using Support Vector Machines
Enthalten in QSAR & combinatorial science Bd. 28, 2009, Nr. 6‐7: 709-718. 10 S.
Online Ressource
Artikel 205 Ice breakup forecast in the reach of the Yellow River: the support vector machines approach
Enthalten in Hydrology and earth system sciences discussions 2009, Nr. 2: 3175-3198
Online Ressource
Artikel 206 Support Vector Machines for Identification and Classification Problems in Control Engineering
Enthalten in Automatisierungstechnik Bd. 56, 2008, Nr. 7: 391-391. 1 S.
Online Ressource
Artikel 207 Quantitative Structure–Property Relationship Studies for Predicting Flash Points of Organic Compounds using Support Vector Machines
Enthalten in QSAR & combinatorial science Bd. 27, 2008, Nr. 8: 1013-1019. 7 S.
Online Ressource
Artikel 208 Accurate Prediction of Aquatic Toxicity of Aromatic Compounds Based on Genetic Algorithm and Least Squares Support Vector Machines
Enthalten in QSAR & combinatorial science Bd. 27, 2008, Nr. 7: 850-865. 16 S.
Online Ressource
Artikel 209 In Silico Prediction of Inhibition Activity of Pyrazine–Pyridine Biheteroaryls as VEGFR‐2 Inhibitors Based on Least Squares Support Vector Machines
Enthalten in QSAR & combinatorial science Bd. 27, 2008, Nr. 2: 157-164. 8 S.
Online Ressource
Artikel 210 Identifying interacting residues using Boolean Learning and Support Vector Machines: Case study on mRFP and DsRed proteins
Enthalten in Biotechnology journal Bd. 3, 2008, Nr. 1: 63-73. 11 S.
Online Ressource


201 - 210 von 490
<< < > >>


E-Mail-IconAdministration