Katalog der Deutschen Nationalbibliothek

Neuigkeiten

Leichte Bedienung, intuitive Suche: Die Betaversion unseres neuen Katalogs ist online! → Zur Betaversion des neuen DNB-Katalogs

 
 
 


Ergebnis der Suche nach: tit all "Support Vector Machines"
im Bestand: Gesamter Bestand

241 - 250 von 490
<< < > >>


Artikel 241 Support Vector Machines for Classification in Nonstandard Situations
Enthalten in Machine learning Bd. 46, Nr. 1-3, date:1.2002: 191-202
Online Ressource
Artikel 242 Choosing Multiple Parameters for Support Vector Machines
Enthalten in Machine learning Bd. 46, Nr. 1-3, date:1.2002: 131-159
Online Ressource
Artikel 243 Hierarchical Learning in Polynomial Support Vector Machines
Enthalten in Machine learning Bd. 46, Nr. 1-3, date:1.2002: 53-70
Online Ressource
Artikel 244 Bayesian Methods for Support Vector Machines: Evidence and Predictive Class Probabilities
Enthalten in Machine learning Bd. 46, Nr. 1-3, date:1.2002: 21-52
Online Ressource
Artikel 245 A font and size-independent OCR system for printed Kannada documents using support vector machines
Enthalten in Sādhāna Bd. 27, Nr. 1, date:2.2002: 35-58
Online Ressource
Artikel 246 Support Vector Machines and the Bayes Rule in Classification
Enthalten in Data mining and knowledge discovery Bd. 6, Nr. 3, date:7.2002: 259-275
Online Ressource
Artikel 247 Extracting Phonetic Knowledge from Learning Systems: Perceptrons, Support Vector Machines and Linear Discriminants
Enthalten in Applied intelligence Bd. 12, Nr. 1-2, date:1.2000: 43-62
Online Ressource
Artikel 248 Evaluating the Generalization Ability of Support Vector Machines through the Bootstrap
Enthalten in Neural processing letters Bd. 11, Nr. 1, date:2.2000: 51-58
Online Ressource
Artikel 249 A comparative study of artificial neural networks and support vector machines for predicting groundwater levels in the Ziveh Aquifer–West Azerbaijan, NW Iran
Enthalten in Arabian journal of geosciences Bd. 16, 1.4.2023, Nr. 4, date:4.2023: 1-9
Online Ressource
Artikel 250 A comparative study of sequential minimal optimization-based support vector machines, vote feature intervals, and logistic regression in landslide susceptibility assessment using GIS
Enthalten in Environmental earth sciences Bd. 76, 17.5.2017, Nr. 10, date:5.2017: 1-15
Online Ressource


241 - 250 von 490
<< < > >>


E-Mail-IconAdministration