Katalog der Deutschen Nationalbibliothek

Neuigkeiten

Leichte Bedienung, intuitive Suche: Die Betaversion unseres neuen Katalogs ist online! → Zur Betaversion des neuen DNB-Katalogs

 
 
 


Ergebnis der Suche nach: "Machine Learning"
im Bestand: Gesamter Bestand

461 - 470 von 29112
<< < > >>


Artikel 461 Machine learning is changing osteoporosis detection: an integrative review
Enthalten in Osteoporosis international 10.6.2025: 1-14
Online Ressource
Artikel 462 Material Characterization of Aluminum Castings Using Machine Learning Techniques
Enthalten in International journal of metalcasting 10.6.2025: 1-6
Online Ressource
Artikel 463 MeteoSaver v1.0: a machine-learning based software for the transcription of historical weather data
Enthalten in EGUsphere 10.06.2025: 1-52. 52 S.
Online Ressource
Artikel 464 Multi-Machine Learning Ensemble Regionalization of Hydrological Parameters for Enhances Flood Prediction in Ungauged Mountainous Catchments
Enthalten in EGUsphere 10.06.2025: 1-41. 41 S.
Online Ressource
Artikel 465 Tree-Based Machine Learning and Flow Simulation for Debris Flow Susceptibility, Runout Propagation, and Dynamics in the Higher Himalayas
Enthalten in Mathematical geosciences 10.6.2025: 1-39
Online Ressource
Artikel 466 Machine‐Learning‐Aided Advanced Electrochemical Biosensors
Enthalten in Advanced materials 09.06.2025. 32 S.
Online Ressource
Artikel 467 Synergistic Architectures in Fenton‐Like Catalysis: Bridging Single‐Atom and Nanoparticle/Cluster Dynamics for Enhanced Activity, Stability, and Selectivity
Enthalten in Advanced functional materials 09.06.2025. 19 S.
Online Ressource
Artikel 468 A Machine Learning Model to Predict Treatment Effect Associated with Targeted Temperature Management After Cardiac Arrest
Enthalten in Neurocritical care 9.6.2025: 1-9
Online Ressource
Artikel 469 Assessing urban landscape dynamics and its relations to changing surface thermal character and prospects: a geospatial study of a tropical industrial city using machine learning algorithms
Enthalten in Environmental science and pollution research 9.6.2025: 1-35
Online Ressource
Artikel 470 Letter to the editor concerning “A multimodal machine learning model integrating clinical and MRI data for predicting neurological outcomes following surgical treatment for cervical spinal cord injury” by T.Shimizu, et al. (Eur Spine J [2025]: doi: 10.1007/s00586-025-08873-2)
Enthalten in European spine journal 9.6.2025: 1-2
Online Ressource


461 - 470 von 29112
<< < > >>


E-Mail-IconAdministration